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Motivation

Mesonic spectral functions

The spectral function (SF) is the Fourier-transform of the
imaginary part of the retarded correlator

We will consider correlators of charmonium currents in the
pseudoscalar(PS) and vector(V) channels

These correspond to 7. and J/W¥

J/W suppression is regarded as an important signal of QGP
formation

The low frequency behaviour of the SF is related to transport
coefficients

The talk is based on: JHEP 1404 (2014) 132



Preliminaries

Spectral function = im part of real-time retarded correlator
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Relation to the Euclidean time correlator

cosh(w(T — 1/2T))
sinh(w/2T)

G(r,p) = /0 dwA(w, P)K(w, 7) where K(w, 1) =

The inversion of this equation is and ill-posed problem.



The Maximum Entropy Method

The method in a nutshell
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m(w) is a function, summarizing our prior knowledge of the
solution. Then we average over o. The conditional probability
P[a|data, m] is given by Bayes' theorem.



Simulation details

Lattice details

Action of BMW collaboration in 2008 (talk tomorrow: Trombitas).
Gauge action = Symanzik tree-level improved gauge action
Fermion action = 241 dynamical Wilson fermions with 6 step
stout smearing (p = 0.11) and tree-level clover improvement
Same configurations as in JHEP 1208 (2012) 126

a=0.057(1)fm

m,; = 545MeV
Ns = 64
N; = 28...12

T = 123...288MeV
We measured the charm meson correlators on these lattices.



Outline of MEM procedure

Stability test at the lowest temp

e Drop data points, emulating the number of data points
available at the lowest temperature (N; = 28)

e Do the same analysis as with the higher temperature
correlators. If the ground state peak cannot be reconstructed,
the given number of data points is not reliable

e RESULT: N;=12 NOT OK, N;=14,16,18,20 OK

Error analysis

e Systematic error analysis: vary Aw, N, the shape of the prior
function: mg, mow?, 1/(mo + w), mew and my=0.01, 0.1, 1.0,
10.0.

e Statistical error analysis: given set of parameters, 20 jackknife
samples



Sensitivity on prior function
This is the PS channel, but V looks similar
PSEUDOSCALAR CHANNEL, N;=20, T/T~0.9
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Temperature dependence

PSEUDOSCALAR CHANNEL, m(w) = 0.1 w?
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Vector channel
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Temperature dependence
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Pseudoscalar channel - position of 1st peak

Position of first peak in lattice units
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Vector channel - position of 1st peak

Position of first peak in lattice units
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Charm diffusion coefficient

Kubo-formula
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If D > 0 we have p/w > 0 for small w implying a transport peak

Narrow transport peak
In the case of a narrow transport peak, we can use the ansatz:

Atransport(w> T) = f( T)W(S(w - 0+)

This does not mean, that the diffusion coefficient is infinite. But in
case of a narrow transport peak, the Euclidean correlator

G(7,T) = [ K(w,T)A(w, T) is not sensitive to the full shape of
the peak, only the area. The contrubtion of the transport peak will
be a temperature dependent constant (zero mode).



Some indication of a transport peak

N; = 16 not conclusive
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A different method

Definition of G/ G;ec

Jakovac, Petreczky, Petrov, Velytsky: Phys.Rev. D75 014506 (2007)

G(t,T) G(t,T)
Grec (t. T) [ A(w, Trer)K(w, t, T)dw

Midpoint subtracted version

G- G(t,T)—G(Ng/2,T)
Grgc B G (t T) rec(Nt/2 T)
G(t, T)— G(N:/2,T)
JA(w, Trer) [K(w, t, T) — K(w, N¢/2, T)] dw

This removes the zero mode.



Pseudoscalar channel
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Results: G/ Gyee

Vector channel
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Results: G~ /G,

Pseudoscalar channel, midpoint subtracted version
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Results: G~ /G,

Vector channel, midpoint subtracted version
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Results: G — G

Vector channel

1e-05

5e-06

G'Grec
o
==
RO
N

-5e-06
N=16 ¢
T NE=14 —O—
N=12 ——
-1e-05 ! ‘
2 4 6 8 10

t/a



Conclusions

MEM analysis

e There seems to be no change in the SF in the PS channel up
to 1.47,

e There seems to be some change in SF in the V channel

e Indications of a transport peak in the V channel

G/ Gyec analyis

e No change in the PS channel

e In the V channel, results are consistent with a temperature
independent w > 0 part and a temperature dependent zero
mode (narrow transport peak), described by the ansatz
Aw) = f(T)wd(w —07) + A(w, T = 0).



Backup - implementation details 1

MEM continued...
It can be shown, that the maximum of Q is in an Ngat5
dimensional subspace:

Nesata
A(w) = m(w) exp <Z s,-f,-(w))
i=1

Two choice for basis functions: Bryan (Eur. Biophys J. 18, 165
(1990)) or Jakovdc et al (Phys.Rev. D75 014506 (2007). We use
the latter. In this case the maximization of Q is equivalent to the
minimization of

Ndata Ndata

_ @ C:c- omex _ data,.
U=~ > siCys; +/0 dwA(w) — > Gt

ij=1 i=1

Comment: Have to use arbitrary precision arithmetics with both
methods.



Backup - implementation details 2

Problem: stopping criterion
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Backup - implementation details 3

Solution: going back to the N, dimensions
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Backup - shortcomings of MEM

Conclusions from mock data analysis

e MEM gives the correct qualitative features of the spectral
function, but it is not a precise quantitative method.

e The peak positions agree well with the input, the shapes do
not

¢ As long as the data points are not too noisy, O(10) point are
enough for reconstruction.

e Features that remain unchanged by varying the prior are
restricted by the data.

e Peaks close in position can be merged into one broader peak.



Backup - charm mass tuning

From Davies et al PRL 104, 132003 (2010) m./ms = 11.85.
Because of additive renormalization, it is impossible to use this
directly. We use (m. — mg)/(ms — m,q) where the additive
renormalization constant cancels. We know that for ud and s the
masses used in the simulation correspond to a mass ratio of 1.5
(Durr et al. Phys. Lett. B701 (2011) 265), from this we get

(me — ms)/(ms — myq) = 32.55 We check if the meson masses are
indeed in the right ballpark:

JP mj ma ma/mp:za  Mexp/Mpy
0~ ms,me  Ds 0.54(1) 0.95(2) 0.932

0~ meme ne  0.8192(7) 1.437(4) 1411

1= meme DY 0570(1) 1 1

1= meme J/U 0.8388(8) 1.472(2)  1.466

3/27 3mg  Q  0.478(8) 0.84(2) 0.791




